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ABSTRACT

A model is presented of the decision—making process used by intermediaries

in small world experiments in the U.S. This involves allocating each of the

population of the U.S. to one of 16 categories; the membership of each population

is a function of the target In the small world experiment . This is shown to

be equivalent , for modeling purposes, to a Markov process with 16 states.

The Markov transition probabilities are derived partly from reverse small

world data and partly by guesswork, but using as few disposable parameters as

possible (3). Statistics of chain lengths from various types ot starter (e.g.

those far from the target, those in the target’s occupation , etc .) are derived ,

and compares favorably with observations. The possibility of incompleted

chains is included by allowing a constant probability of loss at every step in

the chain. Again, there is good agreement with most observations.

A discussion is given as to how such a model might be validated by

suitable observations; in particular, a set of experiments is described which

should produce a great deal of additional information about the small world

experiment.
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A PSEUDOMODEL OF TRE SMALL WORLD PROBLEM

I. Introduction

The Small World (SW ) technique was invented by Stanley Milgrain ( 1967 ) as

a means of gathering data about social relations in the U.S. Briefly, a

~3tarter ( s)  is asked to send a folder to a Target (T) if and only if S “knows

T personally .” If S does not know r p , then S is asked to send the folder to

someone he or she knows who “has a better chance ” of knowing T. Milgrain and

his associates used the SW technique to study mean chain lengths between ran-

domly chosen persons in the U.S. as well as between persons who were deliberately

chosen as Ss and Ts because they were members of different races, classes, or

occu~ ational groups. Others have used the SW technique to study organizational

structure (Lundberg , 1975); and several theoretical papers have appeared which

treat the mathematical problems associated with the basic SW goal, namely to

find out whether everyone is connected to everyone else in the world by a

path through a set of links , where the links are other people, who are also

connected to everyone else.., and so on. The first such paper was written 20

years ago by Pool and Kochen, and has enjoyed an “invisible college” following

ever since (Pool and Kochen, 1978). Indeed , it was Pool and Kochen’s paper

which led Mllgram to develop his famous data gathering technique.

The SW method has provided some important information about social struc-

ture. For example, as hoped, it has produced statistics on the mean chain

length between individuals and across socioeconomic boundaries in the U.S. An

extensive review of the SW literature and findings is presented elsewhere

(Bernard and Killworth, 1978). In this paper we try to extend the usefulness

of the SW method by a) drawing on what is known about social structure; and

b) constructing a plausible model oV how a folder travels between links in a

~W c Fui ln .  We will poHtulate a p1au: Lb1~ list of criteri a which SW experiment

_ _ _ _ _ _ _  
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participants use in selecting their choice of person to whom they will send

the proverbial folder. This list is based on our findings from an experiment

we conducted on the “reverse small—world problem ” (RCW , Killworth and Bern ard ,

1978). In other words, we will present a simple algorit.hz~ for r o’iing along

the chain , from S to T.

The form of this algorithm is equivalent to placing all the people in

the U.S. into a collection of categories, for a given SW experiment . The

membership of each category is a function purely of step target . Under this

assumption , a second SW experiment , with a different w’mld produce iden-

tical categories, but with different memberships. Because of thi s assumption ,

the movement of the folder in any SW experiment can be modeled , on the macro

scale, as a Markov process, with “states” replacing “categories” as the unit

under investigation .

The transition matrix for such a process must be obtained both from data

and from guesswork . The data from the PSW experiment provide some information;

the arguments of Pool and Kochen (1978) provide more; but guesswork remains

necessary . Now, the Markovian assumption is only a model, and models with

many adjustable parameters can t r iv ia l ly  be tuned to fit the real world.

Hence , we have used as few di sposable parameters as possible , in order to

provide something approaching a test of the model.

Although our model fits the extant date well, a real test remains to

be done. For example , we do not know whethmr the categories of choice which

we have created are the “real” categories used by participants in a SW ex—

periinent . We will show how the data necessary for a stringent test of the

model may be acquired experimentally. We hope that this will extend the

usefulness of the ~W method by allowing predictions to be made about other

observable phenomena from th~ data It produces. We hope, in other word8, to

- --— ~~~~~~~~~~~~~~ -- . - —_- -
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be able to use data about SW chains to say something concrete about social

structure.

II. Operational Decision Making

In this section , we consider how a person anywhere in a SW chain chooses

the next link in that chain. Some information is available already. The

work of Milgrani and his associates (Travers and Milgram , 1969; Korte and Mil—

gram, 1970) has shown that there is a tendency for choosing the next link on

the basis of the target’s occupation —— at least for stockbroker targets~ They

also found a tendency for each link to be nearer (at least in geographic dis-

tance) than all previous ones.

The hSW experiment added more information. Except for targets which are

perceived to be in some way “near” the starter , location and occupation are

confirmed as the overriding reasons for choosing links. Furthermore, the

higher the status of T’s occupation, the more likely occupation is used as a

reason for making a choice. In fact, a linear fit can be made (accounting for

37% of the variance) to the probability of choosing on the basis of either

location or occupation. This depends on the size of T’s town (small or large),

distance of T’s town from the starter (in a neighboring state or not), and

occupation level of the target on the Duncan—Reiss (1961) scale. Finally, the

RSW data show that on many occasions Ss made choices who were associated with

a particular occupation or location, even though the choices neither practiced

T’s precise occupation, nor lived in T’s precise location. For example, our

respondents often explained that they were choosing their pharmacist as a link

to a medical technician, because they did not know any nurses or physicians.2

In order to use the RSW information , we shall assume that all intermediaries

in a SW experiment can be treated as Starters, i.e., they are not concerned

with the history of the chain in making their choice of the next link. Tu.is

includes the particular case of intermediaries who are in the same occupation

___  • -,.‘ 
-

~~~~~~~ .--- ~~—



as ~2. Our assumption is that these intermediaries are no more or less likely

to make an occupation—oriented choice than any other intermediaries. In RSW

we found that the probability (over 58 ~s) of’ making occupation choices for

stockbroker Ts was identical to Travers and Mi Lgram ’s findings for SW chains

to an actual stockbroker. In other words , there Is rv~ evidence (yet), on

whether an intermediary ’s occupatinri has any bearing on whether his choice

wi ll L~ made on the basis of occupation . ~1’ course , intuitively, one feels

that lawyers, for example, would b~ very Iike)y to choose another lawyer to

get t~ a lawyer T, but that this woui•d ~~~~~~~ be the ~:a:;e f , r , nay,  carpenters—

to—carpenters. However, this remains to b’ derronst,rated henc~- our ~is~;uxnption

that chain history is irrelevant . Thin allows 1J~~ f~~W dat a to be applied to

ea~ t intermediary link as well as to tho starter. We also assume that make

t,t .eir choice of’ the next, link in a ~ W experiment purely on the basis of’ loca—

tior and/or occupation. Two important cases are excluded from this assumption.

The firnt case in when ~ knows T. The second is when believes that the

choice he makes known T. We term this ~holc’• the “pen ii t imate ] ink .” ~) t

cou rse , ~ may be mistaken : the “penultimate l i n k ” may riot :tetually krv w T.

These assumptions will be discussed c r it i c a l l y  in the conc lus ions.

With these assumptions , how does choose his next l ink?  The mech ani sm

which we postulate is shown in flow—chart form in Fig. 1. We must stress

that thi n stems specifically from one single——and’ plausible——assumption , that

Ss do the best job they can of choosing their next link . XHowever , even if

this mechanism is totally incorrect, this will not invalidate the model ’s

results, as will be seen). In Fig. 1, S first decideS whether he or she knows

T or a penultimate link ; if S does, then he chooses appropriately . If’ S knows

neither ‘P nor a penuiti mate link , t hen t h e  next . best (‘hulce’ is someone who Is

near ‘I” and who in In thc nume ‘c  ipat i ( in  re : ;  T . (Art ope rat. I onit I dcl’ m l  t. I ( t i  or

“ne~Lr ‘J ” In given b~’ ow).

If S can not combine both occupation and location in selection of’ an

“ - -- - S 
~~_

__-_
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intermediary , then a decision is made whether to choose from either of these

two domains. We do not know how such a decision is reached. However , the

probability of making either decision is fairly well known from the RSW data,

so for this model we assume that a decision is made with probability P, of

choosing on location , and P0 = (1_F
L ) of choosing on occupation. (P

1 
is ob-

tained from the RSW data),

If S decides to choose on the basis of location , he attempts t~ “get

closer” to T. It is not obvious that “closer” is necessarily related to

geographic distance , but we assume that is is for simplicity. If S knows

someone close to T, he chooses the closest such individual. If not , he looks

for someone associated with T’s location , and chooses the most likely person

as the next link .

As in the pharmacist example above , informants often told us they didn ’t

“know anyone in California” but their uncle or friend “used to work in San

Francisco. ” The uncle or friend might now live in Iowa , but the associ at ion

with  a T in California seemed to be the reason for making the particular

choice.

If all else fails , S ch ooses a “more likely” person who is at least not

f urther away f rom T than S is; typically t his  would be someone who “ k nows

more people than S does.”

If S chooses on the basis of occupation , a similar set of decisions

follows. Thus , if T is a dentist , and if S chooses a dentist , then S chooses

the geographically closest dentist to T that he knows. S may well , for reasons

only he knows, choose a dentist further from T than S is; but presumably not

too much further away. (For clarity, this is omitted from Fig. 1) . As above ,

is ~ chooses on occupation , but does not know anyone in T’ s occupation , then

uom,’r,rtc I ii nel ected who In annoci,il,’d w i t.h 1 ’ ii oec:upii.l. I or

~‘inall.y, the name “desperation mov’ ” is available to ~; when choosing on

occupation as when choosing on loc,iUon : S may choose someone nearb y who

________  -5—-- ---— —.~~~~~~~~~~~ --- - — - ~~~~~~~~~~~~~ .—- s-~-------
• -~~
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“knows a lot of people.”

In setting up this model of the decision making procens, the role of

occupation as a reason for choice has been made reasonably operational, whereas

distance and “near T” have not . “n RSW the simple concept of near vs. far

was used in order to make geographical distance discrete . “Near” meant “in

bordering states” and “far” meant “everywhere else.” Since SW chains will,

in general, reach to the center of large cities as well as to very small towns,

such a crude measure as near vs. far is probabiy not very useful. Two people

living a mile apart in a small town are far more likely to know each other than

two people living a mi le apart In Chicago . This suggests that population

density is a more relevant measure I’or distance , and will be adopted here.

Clearly , population density (however it is defined ) is a continuous

variable. For esthetic , sociological and mathematical reasons, however , we

have divided the population of the U.S. into discrete sizes~.
3 We argue that

most of the U.S. is “far” (on any measure ) from a specific T. However , many

people do live in the same state or city or town as a given T, and are therefore

“closer” to T. In fact, Travers and Milgram (1969 ) found that Ss in the same

city (Boston ) as ‘P were one link closer to T than Ss who were “far away” (in

Nebraska).

We choose to split distance into four categories based on population size,

as follows: far from T; in the same region as T; in the same area as T; and in

the same town as T, in increasing order of proximity to T. The relevant pop-

ulation sizes of these four categories must (eventually ) be guessed . Let far

be taken to include most of the population of the ~J ,S, (.2 1 108 ) , and let town

be defined here to be a population of 10,000. The U.S. Census Bureau uses

2,500 as the cutoff for an “urban” area. Most observers would probably find a

t own ui , say, 3,000 populat.iori to b’ anyI.hin~ but urban . ‘t he nverap,e niz” of

a rensut; tract In large cltIes I n  the  U . n .  (over 50 ,000 pop u1~etI on ) I s  about

—__— - --5— -___ -- — - - —5— - .
~~~— - --5 
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14,000 persons. The model we present below assumes that cities are collections

of neighborhoods (here called “towns”) each of which is taken to be of order

10,000 population. As it turns out , our model is relatively insensitive to

changes in this lower bound value.

Region and area sizes are derived by assuming a constant multiplicative

factor between the population of each category and the next higher. This

factor turns out to be 27, giving the size of a region as 7~ t~ x 10
6 and area

as 2.7 x ~~~~ Conveniently, 7.I-e x 106 is about t he populat ion of New York

Ci ty,  or Washi ngton and Oregon , or North and South Carolina, or Massachusettes,

Maine, New Hampshire and Vermont , e tc . si milarly , the area size is about

the size of a large suburb or a small city. Again , these population sizes are

insensitive to the precise size assumed for town population, because of the

cube root involved.

III. A Representation of the Decision Process

We can now transform the flow—chart of Fig. 1 into a picture of the

likely movements of a folder in a SW chain. The population of the U.S. is

divided into 17 categories, on the basis of location (far, region , area, and

town); plus a collection of penultimate links. The likely movements of the

folder are shown in Fig. 2, which reflec t the likely choice patterns in Fig. 1.

Oth er choices are possible: for example , someone Car may k now nomeone Iii the

same area as T; this is unlikely, but possible —— after all, this is what makes
• the SW problem of interest .

These other possibilities are too complex to represent on a diagram, but

they are easily seen in matrix form, as in Table 1. All likely moves are coded

as L. The unlikely moves have been subdivided into three categories. The first

consists of those which ar3 so unlikely that they almost never occur, such as a

far S knowing a link in the same town and occupation as ‘I’. Although thi s can

occur , we set such probabilities to zero arbitrarily, in order to reduce the

____________ ________ - -—-5 - .
‘ - --~-
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number of disposable parameters in the model. Of course, people from Boston

axl(I Omaha do meet in a cafe in Paris , and do f ind out that they have a common

acquaintance in San Francisco . This is what led Pool and Kochen (1978 ) to

their classic reasoning about the SW probi~�m. However, the overwhelming num-

ber of times that such discoveries do not take place must be the more relevant

fact for understanding social structure , and must therefore be represented in

a model of social structure. Hence , for parsimony , extremely unlikely pro-

babilities are set to zero. Setting them to a small finite value like .001

makes no noticeable difference to the results.

The second and third of the unlikely types of moves in a SW chain occur

sufficiently often to warrant attention. Some of these moves are “helpful”

because they actually advance the folder closer to T; these are coded as H in

Table 1. For example, it is possible that a far S may know someone in the

same area (2.7 x lO~ population) as T. If this is the case, S will almost

certainly choose that person. The ~emainder of the moves are unhelpful, coded

as U in Table 1. Such moves include what we have called “desperation moves ,”

as well as moves which send the folder farther from T than S in order for S to

use occupation as the criterion of choice .

Most of the pattern i.n Table 1 shou l.d now be apparent; however, some

further observations on our choice of entries are in order.

1.) We have arranged the matrix as symmetrically as intuition would

allow. Note, though, the omission of the ULH pattern for Ss associated with

location and choices in T’s occupation. We feel that an S associated with a

region is just as likely, if choosing on occupation, to make a choice in either

far—occupation or region—occupation, hacking Information about such “associates,”

there seems little to be done except to :i.osign the same probability to both

choices.

-., - - - - • ‘-~~~~~~~~
—-- 
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2.) An S in a particular geographic location (e,g, region, ar ea, etc.)

is assumed not to choose a person “associated with” that location , even as a

desperation move. A person living in North Carolina will not choose someone

who “used to work in North Carolina.”

Similarly, S would generally not choose a person “associated with”

his own location arid the the target’s occupation. If S is “far” from T, however,

we allow such a choice as a desperation move .

3.) There are many probabilities connected with penultimate links and

Ts. Obviously, most are zero. Once an S is in the same town (10,000 pop-

ulation) as T, it is very likely (see below) that he knows at least a pen—

ujtiniate link. A person in the same town and occupation as T is also quite

likely to Iu~ow T. Note, finally , that because the penultimate link is only

defined to be someone who is perceived as such by the previous 5, several

moves are actually possible from such people: 1) penultimate links may genuinely

know the target; 2) they may think they know other penultimate links; or 3)

they may simply choose others in the same town, or town and occupation .

IV. The I4arkov Process

It should be clear by this stage that Table 1 can be thought of as a

transition matrix P in a Markov process, in which the 17 categories of Ss are

the 17 states in which the process may be at any stage. Such a concept is

not new in the SW literature. Indeed, it forms the basis of a fundamental

paper by Hunter and Shotland (197l~). In that paper, they divided Michigan State

University into 11 categories, defined by the ordinary university structure

from administration to freshmen undergraduates.

The transition probabilities were obtained from SW experiment data

collected by Shotland (1976). UsIng an extension of the Kemeny and Snell

(1960) analysis, Hunter and Shotland werc able to predict means and s.d. of

path lengths between any pair of cat egories in the university . The means were,

_ _ _ _ _ _  - - .i-----— —
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in fact, predicted very well; but the s.d. were far higher than observed .

Hunter and Shotland explain the discrepancy by the fact that individual net-

works are not necessarily within or between categories, but rather between

or amongst friends. This problem presumably becomes more acute as the folder

nears T.

The difference between the Michigan State Study and ours is: in the former,

the membership of the categories was defined a priori , whereas the membership

of our 17 categories is purely a function of T. In other words, changing the

occupation or location of T directly affects the choices made by alJ Ss, and

therefore the membership of, say, the region—occupation category. At the

local level, the change in category membership is greater for a change in T,

because of such local linkage factors as ethnicity, hobbies, religion, polit-

ical activity, schooling, children, etc.

Although the membership of each category is a function of T, the

existence of each category is not. Of course, the probability of a folder

going from one category to another is a Cunction of T (although, we believe,

not a strong one). As a result, the mean path lengths to enormous numbers of

Ts will turn out to be identical, purely because the transition matrices P

are identical (or nearly so). Thus many people in the U.S. are, by our model,

identical insofar as SW path lengths are concerned , even though the motivations

~.nd reasoning behind the choices made by each S are violently different.

V. The Entries in the Transition Matrix

It is now necessary to translate the U , L and H entries in Table 1 into

specific probabilities of transition from one state to another (not the pro-

babilities of an S knowing someone in a specific category). In order to

avoid having to iess too many of the probabilities, nine explicit assumptions

are made, namely :
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1) A likely (L) probability of transition from any state to any location

or location—associated state has the value ~
( 
~ is constant within

rows but not columns and will be determined below). We assume, in

other words, that theve are equal probabilities of choosing either

a link closer to T, or a link associated with somewhere closer to T.

2) A likely (L) probability of transition from any state to any occupation

or occupation—associated state has the value (again constant within

rows but not columns).

3) An unhelpful (U) probability of transition to a location—oriented

state has the value , where is an empirical constant whose

value is normally taken to be 0.05. In other word s, on about 1 in

140 occasions when a location choice is made , a desperat ion choice

occurs.

14) An unhelpful (U) probability of transition to an occupation—oriented

state has the value

5) A helpful (H) probability of transition to a location—oriented state

has the value 
~
p , where p is another empirical constant , also taken

to be 0.05.

6) A helpful (H) probabilttI of transition to an occupation—oriented

state has the value 
~~
p.

7) A helpful (H) probability of transition to penultimate link or target

has a probability

8) A likely (L) probability of transition to the target is e, where e

is an empirical constant guessed to be 0.6.

9) A likely CL) probability of transition to penultimate link is e. if
transition to T has probability ~~~, and e/2 if transition to T has

probability e.

- ~~~~~~~~~~~~~ ~~~~~~— 
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These assumptions produce the transition matrix shown in Table 2.

Note that the a and 8 entries in each row of the matrix may be found by

using the fit to the probability of choosing on the basis of location , given

in RSW, namely

P = 0.056 size — 0.0031 occupation — 0.092 distance + 0.818

where size = 1 if T lives in a well known big city, and 2 otherwise: distance

= 1 if T is local and 2 if T is far (local is here taken to include town, area,

and region); and occupation is defined on the Duncan—Reiss (1961) scale.

Then

z (all probabilities of transitions from a given state to a location—

oriented state) = P& [1 — prob(penultimate link) — prob(target)]
where the latter probabilities are those of transition to penultimate link

and target respectively. Thus, for the first row, (i.e. transitions from

far )

ya + a + ap + a + ap =

and similarly for occupation

8 + Bp + 8 + 8~ — P0
define ~ and 8 for that row. Similar calculations apply to the other rows.

Typical values of a and B are about 0.2 to 0.3.

Numerical justification of the probabilities P1~ in Table 2 is given in

the Appendix, although much guesswork is still required.

VI. Results From the Model

Results from any Markov model are best presented in terms of observable

quantities. For the SW problem, these are the distributions of path lengths

from Ss to Ts, since these have already been measured by Milgram (1967),

Travers and Milgram (1969), Korte and Milgram (1970), and Lin et al. (1918).

The relevant formu lae for computing the model predictions are given by Kemeny

and Snel]. (1960) and by Hunter and Shot l and ( 197 14).

_ _ _ _ _ _ _ _ _  — — -- — - —•- -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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The probability that a path from a given starter category will be of

length 1, 2, .- .- ., 10 is shown in Fig. 3. The results in our model depend only

very weakly on the size of T’s town or on T’s occupation level on the Duncan

(1961 ) scale. Making a very large change to T (from a small town, occu-

pation level 10, to a large town, occupation level 90) causes a decrease in

path length of order 0.05 intermediaries. Hence Fig. 3, and all other results,

refer uniformly to a T in a large town with occupation level 90——the archetypal

“Boston stockbroker” used by Travers and Milgrain (1969). (Note that in Fig. 3,

and elsewhere, we count path lepKth, and not number of intermediaries , whi ch

seems customary in the experimental literature; hence to compute number of

intermediaries, subtract 1).

The rapid decrease in path length as the starter category nears the target

is apparent. These results can not be compared directly with Travers and

Milgram ; this is because the probabilities of actual completion are much lower

in Travers and Milgram, due to the high attrition rate. However, judged as

relative probabilities of completion, a limited comparison is possi~ 1e.

Travers and Milgram had three starter categories: 1) Nebraska random

(i .e.  “far ” in our termInology) ;  2) Nebr~s1ca stockholders (i.e. I’ar—occupation);

and 3) Boston random (i.e. region). Comparison of uUr theoretical results in

L 

these three categories with their actual data shows agreement , although our

calculated path lengths tend to be too long. Comparison with Korte and Mil—

gram (1970) is more difficult ; while all of their Ss are “far” from T, there

is no way to tell whether any are in our far—occupation category. However,

the general shape of the chain length distribution again agrees well with the

predictions of our model.

Fig. 14 summarizes the path 1eni-~th statistics from our 16 different starter

cat(~gor1ea. The predicted path lengths I~or far , region , and far—occupation Ss

_ _ _ _ _ _ _ _ _ _
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are 7.28 , 5.62 , 6.57 respectively. These may be compared with 6.72, 5.140, and

6.142 found by Travers and Milgram (1969); 6.61 for the far category found by

Korte and Milgram (1970); and ~.o14 for a locale of 7.5 x 1O~ found by Liii et al,

(1978).

With the exception of the far category, which is, as previously noted,

overestimated by the model, the agreement is excellent. The spread about the

mean is also well—predicted , with modeled s.d. of 1.98, 1.78, 1.93, compared

with observed values from Travers and Milgram of 1.73, 2.32, arid 1.79 respectively,

and 2.07 by Lin et al. (1978). Only the s.d. of the Boston random Ss is seri-

ously underestimated. The rest of Fig. 4 is a set of testable predictions about

path lengths from other categories of So. How such tests may be made is con-

sidered in section 7.

It is, of course, quite straightforward to ensure a good fit to data by

adjusting the entries in the transition matrix. It was in order to avoid this

trivializing of the model that only four free parameters were used in P~j. How-

ever, it is still necessary to estimate how dependent are the model results on

the specific entries in the matrix.

To do this, a collection of statistical manipulations were performed,

each testing sensitivity in different ways. The crudest such test involved

changing each non—zero entry in Pj~ by ± 20% in a random fashion (followed

by a division of P1~ by Pij to restore row sums to unity). This led to an

increase in mean path lengths of only 0.1 (further iterations of this random—

ising having successively weaker effects; the mean path from far Ss was, of

course, the most strongly affected). Hence the model is not very sensitive

to gross random changes in Pjj.

Extremely small probabilities had been omitted a priori. They can be

included by allocating a random value between 0.0 and 0.05 to all entries initially

less than 0.01; most mean path lengths are increased by about one Intermediary,

except for paths from far So, which actually become shorter. There are two

(linked) reasons for this. First, thic procedure prod uces a general evening

-~ ~~~~~~~
=i—.-
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out of the transition probabilities towards the system in which transition to

any state is equally likely. Second , it becomes more likely that folders may

move ~ from T. Therefore, accurate modeling of the SW means that very small

probabilities must remain very small.

The next tests involve systematic modification of the parameters rather

than random “adjustment” of the entries. Reducing p and to zero merely in-

creased path lengths, and decreased s.d~~, by about 0.1. Similarly , increasing

p to 0.1 reduced path lengths by about 0.1. Hence, the model is not sensitive

to changes in p and ; in other words, most of the time, folders go through

likely paths, and not through unlikely ones.

The most important parameter in the system is e (I.e. the chance of certain

states knowing T). Increasing e from 0.6 to 0.66 (the maximum value it could

take in this model) only decreased mean path lengths by 0.2. As long as pen-

ultimate links are likely to know T, how likely they are is not particularly

important. Reducing e, however, to 0.2 makes it very difficult to reach T,

and path lengths soar to about 12.

Thus, in the entire formulation, only two quantities are essent ial : the

number of transition states between far and penultimate link (or town—occupation),

and the chance of the penultimate link knowing the target.

Everything we have said so far involves the “life—or—death” SW problem,

where folders must be passed ori. The real world of SW experiments is not so

pure, however, because ‘~
‘olders get lost. A model of social structure based on

the SW concept can, and should, ignore attrition. This is because the SW tech-

nique itself is trying to gather data about the real world. On the other hand,

it Is a trivial matter to include attrition in the model, if one wants to model

the data which are obtained from SW experiments (but not, presumably, social

structure).

WhIte (1970), Hunter and Shotland (19714), and Feinberg and Lee (1975) all

make the simplest null hypothesis, that the probability of the folder being

lost at any step is a constant value, in dependent of both cat egory and pat h
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history. White (1970) finds that a loss rate of 25% fits the Travers ana

Milgram data reasonably , although there is some evidence of variation of loss

rate with path length.

Ir an 18th state (“lost”) is permitted , with a constant probability K of

transition from any state i, so that

P1,18 = K

and the other probabilities ~~ are scaled down by (1 — K), an equivalent 18 x 18

matrix is produced which includes the loss state. (This is the precise inverse

of the procedure used by Hunter and Chotland , 19714, to remove the loss category).

This adds one more free parameter to the system . in order to fix it :~ value,

we use the result from Travers and Milgrnin tha t only 18% of c’hains originating

from the Nebraska random group were completed. (Ac noted by Lundb’~rg, 19714, the

correct figure is 18%, and not 214% as stated by Travers and Milgram who neglected

the 79 folders which never got beyond the Ss). A value of K of 0.22 (c.f. White’s

estimate of 0.25) gives a completion rate, for far Ss, of the 18% observed ; for

our purposes, this determines K.

A test of the model is therefore to compare loss rates from other pop-

ulations, as shown in Fig. 5. Chains with far—occupation Ss (such as Nebraska

stockholders) have a predicted completion rate of 22%, compared with the ob-

served value of 214%. Chains with rcgionnl Ss (such as Boston random) have a

predicted completion rate of 27%, compared with the observed ~value of 22%.

The latter fit is poor, as are many predictions about the Boston random group.

In section 7 we discuss what we believe to be causing this problem.

The effect of attrition is to reduce the mean length of completed paths

(the longer the path, the more likely it is to terminate in a loss). Fig. 6

show s mean and s.d .  of pat h lengths (both complete and Incomplete ). Mean

complete path lengths from far , far—occupation , and region Ss now become 6.148,

5.8 2 , and 14.99,  compared with Travers and Milgr em ’ s findings of 6.72 , 6. 142 , and

______ ~~~~~~~~
— ,.~~
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5.140 respectively. Predicted s.d~ are a little lower than observed , by about

0.1, except for Boston (i.e. regional) Ss, where the model ’s s.d. is seriously

in error. (Of the three means and s.d~ in the extant data, the Boston s.d. is

the only one which differs significantly (.05 level) from the model ’s predictiong).14

Of course, since complete chains are a statistically rare event , a vast number

of SW starters would be necessary to provide enough complete chains for a

stringent test of any model.

The pattern of predicted incomplete path lengths (Fig. 7) is in excellent

agreement with observations; note particularly that, provided Sn are suitably

“far” from T, the probability of termination is not particularly depend ent on

category of S.

A more rigorous test of the model is a direct comparison of predictions

about complete path lengths (when attrition is included) with extant data, as

in Fig. 8. Not that far and far—occupation path distributions are in good

agreement with the data. As usual, the comparison with regional (i.e. Boston)

data is poor.

VII. Critique

i) Why use a Markov model? There is a great temptation to describe many

social processes in terms of a Murkov transition model. Markov theory is

well—understood and easy to apply. But this does not mean that such -models are

relevant for a description of the SW process.

One of the basic assumptions of Markov theory is that the transition pro-

babilities are independent of the history of the process. But the only circum-

stance in which the full history of the SW process is of any importance is in

the conduct of SW experimentsl All other network processes, we believe, involve

at best the previous link in a chain. It is true that rumors sometimes begin

with “I heard from so—and—so that ....“ And one may, in fact, choose to squelch

the rumor If the credibility of’ “so—and—~o” Is suspect. But where dues thi s

stop? We choose to assume that , in general, only a very limited (if any) history

•c -;~;~.---- 3~~~
_ -.----- - -
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is important for understanding communication flow. This is , of course , testable

with a set of SW e~.?eriments , one which provides Ss with the chain hI~tory

(as usual), and one which does not. It is entirely possible that attrition may

be reduced by not providing the chain history. Lone chains (i~ known ) may

frustrate intermediaries and make them more inclined to drop out of the experi-

ment.

Another serious objection to the Markov hypothesis was raised by Hunter and

Shotland (19714), in a critique of their own model. They argued that their

categories and associated transition probabilities did not represent how Ss

actually made their choices. They felt that the Markov model, while parsi—

rnonious, did not reflect psychological realities. This is probably true , but

if one wants to describe the behavior in a social process (rather than the

presumed psychological forces which drive the process) then psychological

realities may be irrelevant. On the other hand we believe that the 16 cate-

gories of’ our model are relevant to how an S makes a choice in a SW process:

both because RSW provides some evidence of at least the types of category we

suggest, and also because the membership of each category is not a static

quantity, but a function of the target. How this can be tested is discussed

below.

2) Why not use a simple model? It might be argued that the degree of

complexity of our model is too great; a much simpler Markovian model would

generate statistics that, with suitable parameter tuning , would still fit the

data well. Specifically, why should location and occupation, both of target and

of intermediaries be retained in the theory?

One can construct a very simple model in which the folder is presumed to

move in four preordained steps (region — area — town — penultimate link),
followed by transition to T with probability e, and to another penultimate link

with probability 1 - e. Taking e to be 0.4 gives a mean and s.d. of the path

length of 6.~ and 1.9 respectively. Although these are very good fits to
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observed results, the shape of the path distribution is radically different

from the observed. Furthermore, if a constant loss rate of 0.2 is added, then

e must be reduced to 0.25 in order to fit the data. This seems to us to be an

unacceptably low value for the probability of a penultimate link knowing T.

Another simple model assumes that the same five steps (region — area —

town — penultimate link — T) must be traversed, but with the probability of

moving one link down the chain being e at every step (i.e. a random walk

which may not proceed backwards). Choosing e to fit the observed mean path

length of 6.5 gives e = 0.77. The resulting s.d. of the path length distri-

bution is, again, seriously in error.

It is clear that the SW process must be more complex than the above simple

models. But how complex? Is the concept of occupation categories really

necessary?

Although RSW showed that target occupation has a strong influence on S’s

next choice, Section 6 showed that it produced little, if any, effect on path

length statistics. However, the types of path (location—oriented vs. occupation—

oriented ) were a strong function of target occupation. (For low target occu-

pations, hardly any occupation choices are made). We believe, therefore, that

occupation must be retained in any adequate description of the SW process.

3) Are the 16 categories in the model appropriate?

Another basic assumption of Markov theory is that its component states

are discrete and well—defined. Frankly, we do not know whether categories are

independent of S, or even if categories exist. Obviously, we know even less

regarding whether four discrete population sizes (far — region — area — town)

is the “right” number to use , or even whether modeling “distance” by population

size is legitimate .

We suspect that North and Uoutli Ca r ulina combined are not really equivalent

as a social unit to New York City, ‘lespite the fact that their populations are

simi lar. The lack of success of our predictions concerning the Boston starters

—----
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may only reflect a lack of fine tuning; or it may reflect a genuine misrepre-

sentation of Boston in the i odel. Suffic~ent1y varied SW experiments should

be capable of distinguishing types of subpopulations, and the quantities on

which such definitions depend . Can the concept of “neighborhood” be quantified?

is) Is any of this testable?

One test is straightforward: many numerical predictions have been made

regarding SW chains from Ss other than those reported in the literature.

Obvious experiments can be concocted to verify these predictions.

The second test is more difficult, but more fundamental . Can one derive a

set of meaningful categories from data? The answer is “no,” given currently

available data. We believe, however, that experiments can and should be performed

to acquire data which will either yield (or disprove the existence of) a

collection of categories for the SW process. Along the way, of course, much

other useful information will be produced. Specifically, a collection of Ss,

who may all reside in the same locale, are presented a short (order 100) list

of Ts. Some Ts very locally (in the same “town” as the s), some “furtI~er Eway,”

and some “very far away.”

For each T each S is asked to make his or her choice of the next 1~nk i-n

A SW chain. Initially, S knows nothing about T (even T’s name), S may ask

an unlimited number of questions about T untIl S can make a choice of an inter-

mediary. If the investigator does not know the answer to a particular questiQn

about T, then T is called on the phone and the answer is elicited. Preliminary

data show that a rather amazing list of queries is generated for local T~s (i.e.

T’s living in the same town as gs). For example, Ss asked about T’s hair color ,

use of contraception , age of oldest child , etc.

At the end of the first data collection, each question asked is allocated

a number. The characteristics of Sn and their choices, corresponding to as

many of these questions as possible, is t hen acquired by further interviewing

~~~~~~~~~~~~~~~~~~ 
—
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of the Ss, as are their reasons for making each choice. Coding the absence or

presence of each possible question for each S and T combination as zero or

one, respectively, yields many data arrays of the form: Starter information;

Target information; questions asked by S; information about choice; and reasons

for choice. These arrays may then be factored , for example, to yield such things

as number and type of “choice categories,” a list of independent questions, the

important target characteristics, and so on.

A second experiment could then determine whether knowing all the informa-

tion solicited in the first experiment about any T would help a second group

of Ss make “better” choices of intermediaries. To test this , two 3W experiments

are conducted . One group of Ss (and all their intermediaries , all the way (lOWfl

the chain to T) is given all the information elicited about T in the first

experiment. A control group of Ss is given only the information which they

request. Will the chains from the full—information group be significantly

shorter than those from the control group?5

Clearly, the SW and RSW techniques are capable of yielding a great deal

more data about social structure than they have in the past.

- - -~~~~-~~~~~~-- ~~~~~~~~~~-~-~~~~-- ~~~~~~ - . - - -
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APPENDIX

1) Consider first the ~~ which do not involve penultimate links or

targets. A typical row is the first, namely transitions from the “far” state.

Now, there are 27 regions in the U.S., as we have defined them (2 x 108/7.1k xlO6

27). Also , HSW shoved that Ss have about 200 “useful” people who are

available as choices in a SW experinent. Assume that, say, 100 of these are

location choices (the actual figure in RSW was 95) and 100 are occupation

choices (c.f. 99 in RSW). Then the probability that all 100 location choices

have no connection with a specific region is (1 — 1/27)100, which is vanish—

ingly small. (This assumes a random distribution of choices over regions).

Similarly, if there are, say, 50 essentially different occupations, the pro-

bability that none of the 100 occupation choices have no connection with T’s

occupation is (1 — 1/50)100 = 0.13 which is again very small. Thus it is

extremely likely that a choice can be made which moves the folder towards T

(either by location or by occupation). In Table 2 this probability is 1 —~~O( ~ 0CM .
Movement from far to area is more unlikely. There are 730 areas, and the

equivalent calculation yields a probability of 1 — (1 — 1/730)
100 

= 0.1.3 of

knowing someone connected with T’s region (again, this assumes a random (i s—

tribution). This seems, intuitively, to be much too high; indeed , Pool and

Kochen ’s (1978) arguments about social strata (which can, oi course, be re-

interpreted as geographical strata) would reduce this probability drastically.

Hence we choose, perhaps arbitrarily, to leave this probability as

(typically about 0.01 to 0.02). The effects of increasing p (and with it such

probabilities) are investigated in the text.

Movement from far to town (there are 19,742 towns) is highly unlikely on

any structural assumptions; hence the zero probability allocated. Similar

piauulbllity arguments can be given for the other l’j~ in Tah~e ;~ , involving

- 
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varying degrees of guesswork.

2) It is also necessary to justify the probabilities of reaching perk—

ultimate links or T; clearly the model results will depend strongly on how

easy or difficult it is to reach T. Consider first the probabilities of

reaching T from the “town” state in the matrix. Gurevich’s (1961 ) study

shoved that an individual “knows”, on average, about 500 people locally . In

a town of population 10,000 the odds that one of these is T is 0.05 (i.e. ~

However , not all the 500 would be of’ use as potential penultimate links since

many of these are casual acquaintances about whose networks S knows nothing .

Thus the number of potentially useful first links reduces to the 100 assumed

above. Then, using Pool and Kochen ’s (1978, p. 29 and p. 33) arguments, with

n = 100, N = 10
k
, the probability?1thattwo people have at least one common

acquaintance, (i.e. that S can choose a correct penultimate link) iL 0.63 or

0.59, depending on the argument used. Hence, our value of 0.6 for e.

It was our intuition that, at the local level, knowing a penultimate link

would be very likely —- and knowing T would be possible, but not likely . The

above arguments led to our selection of 10,000 as the smallest unit of pop-

ulation .

The probability of transition rrom area to penultimate link again derives

from Pool and Kochen. With n = 100, N = 2.7 x l0~ , p1 
O.O4 (taken again as 

~

‘ ) .

When occupation is also involved in defining 5, it is even less clear what

values of n or N to use for estimation purposes. Using estimates from the U.S.

Statistical Abstracts for 1977, there are, on average, about 200,000 people in

any given occupation. Assuming an even distribution across the U.S., 7,400 of

these are in each of our regions; 270 In  each urea ; and 10 in each town.

A ;~sume that an in h l~~ L; occupation knows 20 people in that occupation who

are closer to T. Then transition from r~gion—occupation to penultimate link

again yields a probability ~ (n  = 20 , N = 7 , )
~00 , p1 = 0.05).

‘~~~~~~~
— $..~~~~
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Similarly , transition from area—occupation to penultimate link and T yields

(n = 20, N = 270) probabilities 0.73 and 0.07 respectively, taken here as e

and

Transitions from penultimate link or town-occupation to penultimate link

or target are, from the above figures, extremely likely . We give them the

high values in Table 2 without any justification. Obviously , they remain to be

tested empirically.

Finally, there is no information yet available regarding transition from

“associate” states to penultimate l ink or T. We use the same device as in the

main body of the matrix , which is to allocate the same probabilities as for a

non—associate who is one distance unit further removed from T. For example ,

transition from someone associated with T’s town to penultimate link is given

the same probability as transition from an S in T’s area to penultimate link.
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FOOTNOTES

1. Liii et al. (1978), however, show a slight tendency to choose the next

link of occupational status hig~ier than T, for middle—class Ts.

2. Of course, sex of T and sex of intermediary are strongly related to

sex of choice. However, in what follows we will neglect this because ,

for modeling purposes, it merely doubles the size of the matrices without

contributing any further information.

3. It would be possible to set up a model with population as a continuous

variable, but the mathematics of a continuous Markov process would be

both harder and less clear as to their sociological meaning.

4. Comparison with Lin et al.t s (1978) data for a locale of 7.5 x 105 —— neither

region nor area in our terminology —— shows good agreement for the mean but ,

again, a significant underestimate by our model for the s.d.

5. Lin et al . (1977) examine a very restricted form of this question (using

race and occupation only) but unfortunately do not give any results.
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Table 1. The lik.lihood of transition from category to category in the model.

L r.pr..ents a likely probability; H represents an unlikely, but
helpful probability; U represents an unlikely and unhelpful prob-
ability ; and 0 represents a probability that is so unlikely that it
can be set to zero with out loss of generality.
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Table 2. The model transition probabilities for the Markov process. The
quantities a and B are determined row by row.
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FIGURE CAPTIONS

1. How an intermediary is assumed to choose the next link in a SW chain.

(One stage is omitted , for clarity. See text).

2. Likely movements between categories in the model.

3. The model probabilities of path lengths originating from each category

of starter , taking the values 1, 2, ... 10. (Path lengths, and not

number of intermediaries, are used consistently throughout).

4. Mean and standard deviation of path lengths from each starter category.

5. Completion probabilities for paths originating from each category, with

a loss rate of 22%.

6. Mean and standard deviation of complete and incomplete paths, originating

from the 16 categories of the model .

7. Predicted and observed probabilities of incomplete path lengths taking

the values 1, 2 , ... 10. For clarity, only values for the three starter

categories which allow comparison with observed path lengths are shown.

8. Predicted and observe d probabilities of complete path lengths (with a 22%

loss rate) taking the values 1, 2 , ... 10. a) “far” starters; b) “far—

occupation; ” c)  “ region. ”
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